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Abstract
Modern neural networks have shown promise for
solving partial differential equations over surfaces,
often by discretizing the surface as a mesh and
learning with a mesh-aware graph neural network.
However, graph neural networks suffer from over-
smoothing, where a node’s features become in-
creasingly similar to those of its neighbors. Uni-
tary graph convolutions, which are mathemati-
cally constrained to preserve smoothness, have
been proposed to address this issue. Despite this,
in many physical systems, such as diffusion pro-
cesses, smoothness naturally increases and unitar-
ity may be overconstraining. In this paper, we sys-
tematically study the smoothing effects of differ-
ent GNNs for dynamics modeling and prove that
unitary convolutions hurt performance for such
tasks. We propose relaxed unitary convolutions
that balance smoothness preservation with the nat-
ural smoothing required for physical systems. We
also generalize unitary and relaxed unitary convo-
lutions from graphs to meshes. In experiments on
PDEs such as the heat and wave equations over
complex meshes and on weather forecasting, we
find that our method outperforms several strong
baselines, including mesh-aware transformers and
equivariant neural networks. Our code is available
here.

1. Introduction
Solving partial differential equations (PDEs) is crucial
across many scientific and engineering domains, including
acoustics, fluid dynamics, and electrodynamics. Recently,
neural networks have been explored as alternatives to ana-
lytic and traditional numerical methods for solving PDEs.
Neural networks offer faster inference (Cui et al., 2024), dis-
cretization free solutions (Li et al., 2021), better robustness
to partial observability (Schlaginhaufen et al., 2021; Huang
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Figure 1. Qualitative comparison of autoregressive model pre-
dictions for the heat equation on the armadillo mesh at timestep
T = 190. Our R-UNIMESH model remains faithful to the ground
truth during each step of the rollout, whereas the EMAN model
over smooths and the Hermes model under smooths. A more com-
plete comparison over several timesteps is in Sec. C.4, Tab. 5.

et al., 2024; Morel et al., 2025), and synergy with existing
finite element methods (Gupta & Lermusiaux, 2023).

However, neural network models often have architectural
biases that hurt their ability to model certain dynamics. In
particular, many deep learning methods solve PDEs by dis-
cretizing the domain into a grid or mesh and modeling the
solution using a graph neural network (e.g., Janny et al.,
2023; Park et al., 2023). Unfortunately, graph neural net-
works (GNNs) tend to oversmooth (Li et al., 2018), where
adjacent node features become increasingly similar over suc-
cessive iterations of message passing. The phenomenon of
oversmoothing occurs in a variety of settings (Cai & Wang,
2020; Bodnar et al., 2022; Keriven, 2022; Rusch et al., 2023;
Balla, 2023; Kiani et al., 2024; Arroyo et al., 2025; Su & Wu,
2025; Mishayev et al., 2025) and hampers the performance
of deep GNNs.

To address oversmoothing, Kiani et al. (2024) propose using
unitary graph convolutions, which constrain weight matrices
to be unitary. This ensures that the linear transformations
preserve norms and remain invertible, improving network
stability. They also prove that unitary convolutions pre-
vent oversmoothing by preserving the Rayleigh quotient, a
measure of graph smoothness. However, this poses a new
problem: many dynamics problems commonly solved using
GNNs require some amount of smoothing. For example,
heat diffusion on graphs and meshes naturally smooths the
input node features. Using unitary graph convolutions in
such problems would result in undersmoothing and does not
give a complete solution to smoothness errors.

In this work, we first theoretically characterize the limita-
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tions of unitary convolutions for dynamics problems. In
particular, we derive a lower bound on the approximation
error of unitary functions and show that unitary functions
are overconstrained for dynamical systems where the solu-
tion’s norm has high angular dependence. To address this
issue, we propose relaxed unitary convolutions, which bal-
ance smoothness preservation with modeling fidelity, outper-
forming existing methods on dynamic systems that require
natural smoothing. We also generalize both the Rayleigh
quotient and unitary convolution framework from graphs
to meshes so that relaxations can be applied in this setting.
Finally, we systematically investigate smoothness tenden-
cies of different mesh-GNN architectures and find that our
mechanism for approximately preserving smoothness is key
to successful modeling, providing equal or greater improve-
ment to other inductive biases such as equivariance.

In summary, our contributions are the following:

1. Derive a lower bound on the approximation error of
unitary functions, demonstrating that they are overly
restrictive when predicting dynamics with high angular
dependence in the solution’s norm (Sec. 4).

2. Introduce relaxed unitary convolutions that balance
accuracy with smoothness preservation, and extend
both the Rayleigh quotient and unitary convolution
framework to meshes (Sec. 5).

3. Empirically analyze the smoothness behavior of vari-
ous GNN architectures on complex dynamical systems,
showing that controlling smoothness can match or out-
perform strong baselines (Sec. 6).

2. Related Works
Oversmoothing and undersmoothing in GNNs. Like
Kiani et al. (2024), our work quantifies the effect of neu-
ral networks on the Rayleigh quotient (Chung, 1997) of a
graph. Kiani et al. (2024) prove that unitary functions, and
in particular the unitary convolution network, strictly pre-
serve the Rayleigh quotient and therefore the smoothness
of input graphs. However, we show both theoretically and
empirically how this property can be overconstraining in
GNNs. Other approaches to quantifying smoothness in PDE
solutions have used the Matérn kernel (Borovitskiy et al.,
2021; Daniels et al., 2025) or decay rate exponents (Kulick
et al., 2025), but none have considered the Rayleigh quotient
for dynamics models as we do.

Our work is perhaps most similar to Keriven (2022), who
also point out that some smoothing can be useful for cer-
tain regression tasks but do not consider dynamics model-
ing specifically. Similarly, Li et al. (2018) point out that
GCNs (Kipf & Welling, 2017) can be understood as a spe-
cial case of Laplacian smoothing, which is a key reason why

GCNs work at all. In fact, Kipf & Welling (2017) argue
that their architecture can be understood as a differentiable
and parameterized generalization of the 1-dim Weisfeiler-
Lehman algorithm (Leman & Weisfeiler, 1968), indicating
that even randomly initialized GCNs can be performant due
to the way they smooth information throughout the network.
Despite these findings, there is comparatively less work
studying the role of smoothness in spatio-temporal model-
ing tasks. While Marisca et al. (2025) study issues with
message-passing based GNNs for spatio-temporal model-
ing, they focus on oversquashing, where information fails
to propagate to distant nodes, whereas our work addresses
oversmoothing and undersmoothing.

Dynamics modeling over graphs and meshes. Our work
focuses on dynamics modeling where PDE solutions are
discretized as signals on graphs and meshes through the
lens of smoothness. Many physical systems, such as wave
propagation (d’Alembert, 1747), heat diffusion (baron de
Fourier, 1822), phase fields (Cahn & Hilliard, 1958; Li et al.,
2024), fluid flows (Constantin & Foiaş, 1988; Anandkumar
et al., 2020), and climate systems (Ghil & Simonnet, 2020)
can be described by systems of PDEs. Deep learning based
approaches are increasingly used to solve these PDEs in
these domains where numerical solving is difficult (Wang
et al., 2020; Cranmer et al., 2020; Anandkumar et al., 2020;
Li et al., 2021; Mustafa et al., 2021; Cai et al., 2021; Mau-
rizi et al., 2022; Park et al., 2023; Liu et al., 2024; Yu &
Wang, 2024; Daniels & Rigollet, 2025). For PDE solving
on meshes, these dynamics can be formulated extrinsically
by embedding the manifold into Euclidean space (Satorras
et al., 2021; Pfaff et al., 2021), or intrinsically by defining
evolution directly in the coordinates of local tangent spaces
(Cohen et al., 2019; de Haan et al., 2021; Mitchel et al.,
2021; 2022; Basu et al., 2022; Park et al., 2023; Suk et al.,
2024; Mitchel et al., 2024). While Cohen et al. (2019), Pfaff
et al. (2021), and Suk et al. (2024) contain isolated exper-
iments related to dynamics modeling, only our work and
Park et al. (2023) study how the choice of Euclidean versus
locally defined coordinate representations in the network
can affect convergence to PDE solutions. Furthermore, our
work is distinct from Park et al. (2023) in that only we di-
rectly assess how these design choices affect neural network
smoothing behavior.

Benchmarking PDE Surrogate Models. While the phys-
ical symmetries of many dynamical systems are well under-
stood (Olver, 1993; Wang et al., 2021; Borovitskiy et al.,
2021), smoothness has received less attention. The per-
formance of deep dynamics models is typically measured
either via quantitative error metrics against the ground truth
or their preservation of underlying physical laws, such as
spectral energy errors (Wang et al., 2021) or equivariance
errors (Wang et al., 2021; 2022a;b). Our work is novel in
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our application of the Rayleigh quotient in quantifying the
smoothing effect of trained GNN dynamics models. Fur-
thermore, we are among the first to design architectures
with inductive biases that encourage the model to match
the Rayleigh quotient of the labeled graphs. Other works
have explored using the Rayleigh quotient as an auxiliary
loss (Rowan et al., 2025), as positional encodings (Dong
et al., 2024), and as a hard constraint to preserve smooth-
ness regardless of the true labels Kiani et al. (2024). In
contrast, only our work and the work of Shao et al. (2024)
use architectural inductive biases to match the smoothness
of labeled graphs, and only our work evaluates how well the
true smoothness of dynamical systems is recovered.

3. Background
We first recall the definition of the Rayleigh quotient, a
measure of smoothness on graphs, and provide background
on unitary convolutions and their invariance to the Rayleigh
quotient. We also introduce the mesh data type, which we
later use to extend the unitary convolution framework from
graphs to meshes.

3.1. Rayleigh quotient

To measure the smoothness of a signal on a graph, we use
the Rayleigh quotient as defined in Chung (1997).

Definition 1 (Rayleigh quotient, (Chung, 1997)). Given
an undirected graph G = (V,E) with |V | = n nodes and
adjacency matrix A ∈ {0, 1}n×n, let D ∈ Rn×n be a
diagonal matrix where the i-th entry Dii = di the degree
of node i. Let s : V → Cd be a function from nodes to
features. Denote by Ã = D−1/2AD−1/2 the normalized
adjacency matrix and X ∈ Cn×d a matrix with the i-th row
set to feature vector s(i). The Rayleigh quotient is

RG(X) =
1

2

∑
(u,v)∈E

∥∥∥ s(u)√
du

− s(v)√
dv

∥∥∥2∑
w∈V ||s(w)||2

(1)

or Tr (X†(I− Ã)X)·||X||−2
F in matrix form. We will often

abbreviate the Laplacian as L = (I− Ã).

Intuitively, the Rayleigh quotient measures the mean dif-
ference in node features for adjacent nodes. A graph with
identical node features has a Rayleigh quotient of zero.

3.2. Unitary Convolution

Kiani et al. (2024) define two different models that preserve
the Rayleigh quotient using unitary functions, which satisfy
U†U = I. In particular, they define the separable unitary
convolution

f sep
UniConv(X;A) = exp(iAt)XU, U†U = I (2)

and the Lie unitary convolution

fLie
UniConv(X;A) = exp(AXW), W = −W† (3)

where exp(·) denotes the matrix exponential. We provide
further background material on the matrix exponential and
its relationship to unitary matrices in Sec. A.1. The au-
thors show that unitary convolutions are mathematically
constrained to preserve the Rayleigh quotient:

Proposition 1 (Invariance of Rayleigh quotient, Propo-
sition 6 in Kiani et al. (2024)). Given an undirected
graph G on n nodes with normalized adjacency matrix
Ã = D−1/2AD−1/2, the Rayleigh quotient is invariant
under normalized unitary or orthogonal graph convolution,
i.e. RG(X) = RG(fUniConv(X)) where fUniConv is either
seperable or Lie.

3.3. Mesh Data

A (triangular) mesh M consists of a set (V, E ,F), where V
is a set of vertices, E = {(i, j)} is a set of ordered vertex
indices i, j connected by an edge, and F = {(i, j, k)} is the
set of ordered vertex indices i,j,k connected by a triangular
face. The mesh generalizes graphs by including high order
connectivity information via the inclusion of faces. We as-
sume that the mesh is a 2−dimensional manifold embedded
in R3, i.e. a manifold mesh. The definition of the manifold
condition for a mesh is given in Definition 9 (Sec. A.7).

4. Theory: Unitary Models are
Overconstrained

While unitary models on graphs can be useful because they
preserve the Rayleigh quotient, this section illustrates how
unitary models can be overly constrained. In particular, we
derive an approximation error lower bound that clarifies
the approximation limits of unitary models. We start by
establishing our unitary approximation learning framework.

4.1. Preliminaries

Let Z = Cn be a domain with data probability density
p : Z → R. Let u : Cn → Cn be a unitary function and let
f : Cn → Cn be the target function. Denote the regression
error by

errreg(u) =
∫
Z

p(z)∥u(z)− f(z)∥22dz.

Group Invariance. Our main result relies on the theory
of approximation error for group invariant functions h. We
review these concepts in detail in Sec. A.4 and provide
informal definitions in the paragraph that follows.

A group invariant function h satisfies h(z) = h(gz) for all
g ∈ G, z ∈ Z. Let Gz = {gz : g ∈ G} be the orbit of
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z. A fundamental domain F of a group G in Z is a set of
orbit representatives. The domain Z can be written as the
union of conjugates, Z = ∪g∈GgF , where the conjugate is
defined gF = {gz : z ∈ F}. Denote the integrated density
on an orbit by p(Gz) =

∫
Gz

p(z)dz. Finally, denote the
variance of a function f on an orbit Gz by VGz[f ]. The
approximation error lower bound for an invariant function
is given by the following proposition.

Proposition 2 (Theorem 4.8 in Wang et al. (2023)). For
a G-invariant function h, the regression error is bounded
below by err ≥

∫
F
p(Gz)VGz[f ]dz.

Proposition 2 was initially stated for real-valued functions
in Wang et al. (2023), but can be applied to complex valued
functions without loss of generality. Furthermore, Wang
et al. (2023) provide numerical evidence that Proposition 2
is a tight bound.

4.2. Unitary Approximation Error Lower Bound

In this subsection, we state our main theoretical result,
which demonstrates that unitary neural networks are over-
constrained when the norm of the ground truth function has
a high angular dependence. Recall the definition of SU(n),
the group of rotations in Cn:

SU(n) = {U ∈ Cn×n : det(U) = 1}.

We can now give an approximation error lower bound for
unitary models. See Sec. A.5 for the proof.

Theorem 1. Let F be a fundamental domain of SU(n) in Z,
e.g. F = {te : t ∈ R+} where e is a standard basis vector
of Cn. The approximation error of u of f has lower bound∫

Z

p(z)∥u(z)− f(z)∥22dz ≥
∫
F

p(∥te∥)VGz[∥f∥]dz.

The proof of Theorem 1 uses the reverse triangle inequality
before applying Proposition 2. Intuitively, the fundamental
domain enumerates all concentric spheres S2n−1 embedded
in Cn. Unitary functions are complex valued rotations and
reflections that preserve the norm of data points that live
on each sphere. The error lower bound is given by the
variance of the norm of f averaged over each concentric
sphere where the norm of u is constant. Our result suggests
that unitary functions can be particularly overly constraining
when the norm of f has a high angular dependence.

5. Unitary Convolution Constraint Relaxation
Since Theorem 1 informs us that a unitary convolution net-
work may be overconstraining when the ground truth is not
perfectly smoothness preserving, we propose two methods
for relaxing unitary convolutions and describe how to extend
these architectures from graphs to meshes. We name these

methods Taylor truncation and encoder-decoder. The Tay-
lor truncation method allows precise control of the extent
of relaxation, whereas the encoder-decoder method scales
more easily with the number of parameters in the network.
The Taylor truncation method is especially useful in cases
where the true smoothness is known a priori, in which case
theoretical results from the literature (see Sec. A.8) can
inform what truncation order Tmax is needed to achieve
enough relaxation. We will use the first relaxation for a
motivating experiment in Sec. 6.1 and the second for a more
challenging set of tasks in Sec. 6.2. A comparison of the
encoder-decoder and Taylor truncation methods is shown
in Fig. 2. We will use fLayer to define individual layers and
SMALL CAPS TEXT to define architectures constructed from
those layers.

Figure 2. Top: After zero padding, individual unitary blocks
are stacked and the output is fed into an unconstrained decoder.
Bottom: Each block uses Taylor truncated unitary convolution.

5.1. Relaxed Unitary Convolution via Taylor Truncation

We relax Lie unitary convolution by truncating the Taylor
series approximations used in Eq. 3. We note that Kiani
et al. (2024) do propose their own constraint relaxation for
separable unitary convolutions Eq. 2. However, their ap-
proach conflates two sources of relaxation: Taylor series
truncation of the matrix exponential and letting U remain
unconstrained, making it difficult to measure the individual
contributions of each source and to tune the extent of the re-
laxation. By relaxing the Lie unitary convolution rather than
the separable unitary convolution, we isolate the architec-
tural component that alters the Rayleigh quotient. Instead of
approximating the matrix exponential using enough Taylor
series terms so that the truncation error is negligible, we
truncate at some T = Tmax where Tmax controls the extent
of the relaxation. Our Taylor-relaxed unitary convolution
layer is defined

fRelaxed(X;A,Tmax) =

Tmax∑
i=0

1

i!
Li(X) (4)
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where L(X) = AXW, W = −W†. While this approach
does not preserve the Rayleigh quotient for small Tmax, we
recover the standard Lie unitary convolution in Eq. 3 in the
limit as T → ∞.

Motivated by the desire to find an appropriate Tmax that
applies only a small perturbation to the Rayleigh quotients of
input graphs, in Sec. B.2 we conduct a sensitivity analysis of
the Rayleigh quotient to different Taylor series truncations.
Consistent with Kiani et al. (2024), we find that Tmax = 10
is sufficient to preserve the Rayleigh quotient. We will
refer to models constructed from relaxed layers in Eq. 4 as
R-UNIGRAPH.

5.2. Relaxed Unitary Convolutional Models via
Encoder-Decoder

In this section, we note a limitation of relaxed unitary con-
volution via Taylor truncation that makes it difficult to scale,
and propose an alternative relaxation method that addresses
this. Since unitary layers cannot change the channel di-
mension of the node features, the only way to increase
the number of parameters in the network is to increase the
number of unitary layers. This means that scaling unitary
convolutional models requires making the model deeper,
which can make training unstable (Balduzzi et al., 2017).
As an alternative, we propose an encoder-decoder method,
which first zero-pads the input node features to the desired
hidden dimension. This allows us to increase the param-
eter count without increasing depth. Zero padding also
trivially preserves the Rayleigh quotient since it preserves
norms. Concretely, we define our zero padding function
fpad : Rn×din → Rn×dout by X 7→ X ⊕ 0, where 0 is the
Rn×(dout−din) zero matrix. We define our k-layer encoder
E by

E = f
(k)
UniConv ◦ · · · ◦ f

(1)
UniConv(fpad(X),A) (5)

where fUniConv is either separable or Lie. The decoder
layer D then serves two purposes: (i) map to the target node
feature dimension and (ii) break the unitary constraint. The
decoder layer can be any network, such as an MLP or GCN.

5.3. Relaxed Unitary Convolution on Meshes

We now generalize unitary convolutional models, relaxed
unitary convolutional models, and the mathematical defi-
nition of Rayleigh quotient from graphs to meshes. This
enables us to solve dynamics problems on manifolds by
discretizing them as meshes, such as testing the thermal sta-
bility of mechanical parts or weather forecasting on Earth.
In particular, we prove that, under modest assumptions on
the mesh triangulation, unitary convolution with a weighted
adjacency matrix preserves the Rayleigh quotient on meshes
(Definition 3); enabling generalization of both unitary and
relaxed unitary models to meshes.

Mesh Rayleigh Quotient. We first generalize the
Rayleigh quotient from graphs to meshes by using the mesh
Laplacian instead of the graph Laplacian. The Laplacian
on a mesh is typically defined as the symmetric cotangent
Laplacian (Reuter et al., 2009) given in Eq. 6, which approx-
imates the Laplace-Beltrami operator for the continuous
manifold which the mesh discritizes. For a scalar function s
defined on nodes,

(L̃(s))i =
1

2Ai

∑
j∈N (i)

(cotαij + cotβij) (sj − si) (6)

where N (i) denotes the adjacent vertices of i, αij and βij

are the angles opposite edge (i, j), and Ai is the vertex area
of i. We use the barycentric cell area for Ai. We note that it
is invalid to define the mesh Rayleigh quotient by replacing
L in Eq. 1 with the symmetric cotangent Laplacian L̃ in
Eq. 6. The cotangent weights in Eq. 6 may be negative,
which means that the Rayleigh quotient is no longer a valid
measure of smoothness (Definition 1, Rusch et al., 2023). To
address this, we use the Robust Laplacian (Sharp & Crane,
2020), which performs a minimal edge rewiring of the mesh
so that the cotangent weights obey the intrinsic Delaunay
criterion.

Definition 2 (Intrinsic Delaunay Criterion, (Bobenko &
Springborn, 2007)). For all faces connected by an edge
(i, j) with opposite angles αij and βij , αij + βij ≤ π.

Concretely, this means that our Laplacian weights are both
symmetric and the off-diagonals are nonnegative; the edge
rewiring simply provides an alternative discretization of the
same manifold. Denote by W the cotangent weights

Wij =


1
2 (cotαij + cotβij) , j ∈ N (i)

−
∑

k∈N (i)

Wik, i = j

0, Otherwise.

(7)

We define a novel Rayleigh quotient for meshes as follows.

Definition 3 (Mesh Rayleigh Quotient). Let M =
(V, E ,F) be a mesh with |V | = n nodes. Denote by
W the cotangent weights corresponding to the Robust
Laplacian L̃. Denote by E ′ the rewired edge set given by
E ′ = {(u, v) : Wuv ̸= 0}. Let s and X be the same as in
Definition 1. The mesh Rayleigh quotient is defined

RM(X) =
1

2

∑
(u,v)∈E′

Wuv

∥∥∥ s(u)√
du

− s(v)√
dv

∥∥∥2∑
w∈V

∥s(w)∥2
=

Tr (X†L̃X)

||X||2F
.

Unitary Mesh Convolution. We now make similar modi-
fications to generalize unitary convolution from graphs to
meshes. Specifically, we modify the functions in Eq. 2 and
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Eq. 3 by incorporating the cotangent weights (Eq. 7) into
the normalized adjacency matrix Ã. We note that this edge
weighting been shown to improve PDE solving numerically
(Crane et al., 2017; Sharp & Crane, 2020) and we are the
first to use it in deep dynamics models. In order to prove that
incorporating these weights preserves the Rayleigh quotient
given by Definition 3, we assume the mesh already satisfies
the Delaunay criterion.

Assumption 1 (Mesh Weights Obey the Delaunay Criterion).
For a mesh M, the mesh is manifold and all angles obey
the Delaunay Criterion given by Definition 2.

We note that there are existing triangulation strategies that
a practitioner can use to ensure that mesh edges satisfy
this criterion as a standard data preprocessing step (Huang
et al., 2018; Sharp & Crane, 2020), see Sec. A.7 for de-
tails. With this assumption, we will now define unitary
mesh convolution. Let D be the weighted degree ma-
trix defined by Dii =

∑
i̸=j Wij . Let ⊙ represent the

Hadamard product which performs element-wise matrix
multiplication. Let Ã be the normalized adjacency matrix
Ã = D−1/2 (W ⊙A)D−1/2. We define separable unitary
mesh convolution as

fSep
UniMeshConv(X;A,W) = exp(iÃ)XU (8)

and Lie unitary mesh convolution as

fLie
UniMeshConv(X;A,W) = exp(ÃXW) (9)

where UU† = I and W +W† = 0. The following Corol-
lary (proven in Sec. A.6) states that Eq. 8 and Eq. 9 preserve
the Rayleigh quotient on meshes.

Corollary 1 (Corollary to Proposition 1). Given a
mesh M with normalized adjacency matrix Ã =
D−1/2(W ⊙ A)D−1/2 that satisfies Assumption 1, the
mesh Rayleigh quotient is invariant under normalized uni-
tary or orthogonal graph convolution, i.e. RM(X) =
RM(fUniMeshConv(X)) where fUniMeshConv is either sep-
arable or Lie.

Relaxed Unitary Mesh Convolution. We create a net-
work architecture by coupling the encoder-decoder relax-
ation (Sec. 5.2) with Lie unitary mesh convolution in Eq. 9.
Concretely, nodes are first zero padded. An encoder E(k)

(Eq. 5) is constructed from k layers of Lie unitary mesh con-
volution (Eq. 9), and a MLP or GCN decoder layer D maps
to the target. We name our relaxed model R-UNIMESH.
R-UNIMESH uses the norm preserving GroupSort activa-
tion from Anil et al. (2019) to introduce nonlinearity. R-
UNIMESH also uses orthogonal weights, since our model-
ing tasks on meshes in Sec. 6 are real valued.

6. Experiments
6.1. Motivating Experiment: Heat Flow on Grid Graphs

In this section, we motivate the use of relaxed unitary models
by showing that R-UNIGRAPH is able to outperform both
normal and Lie unitary graph convolution on predicting heat
diffusion. The Taylor truncation method is key to balancing
the smoothness preservation of unitary models with the
flexibility to capture the true smoothness of the target heat
graph.

Heat Diffusion Dataset. We use PyGSP (Defferrard et al.,
2017) to simulate heat diffusion on 10, 000 two-dimensional
grids, each initialized with 20 randomly placed heat sources.
Denote by H : R+ → Rn a function that maps time t to
the heat distribution of the graph with n nodes. In other
words, the heat field on the graph is represented by a feature
vector in Rn×1. In particular, H(t) = e−τtLH(0) where τ
is a diffusivity constant, L is the graph Laplacian, and H(0)
is the initial heat values across the graph. The task is to
predict the heat distribution on the graph at time t = 4 given
the heat distribution at time t = 3. We denote the target
heat field as Y = H(4). See Sec. B.1 for further dataset
details. We compare the performance in terms of MSE loss
and mean Rayleigh quotient error for three models: GCN,
R-UNIGRAPH, and a Lie unitary model. We use Tmax = 3
for the relaxed model. The mean Rayleigh quotient error is
given by

MRE(f) = |RG(f(X))−RG(Y)|.

Results. As shown in Tab. 1 and Fig. 3, the relaxed model
significantly outperforms the GCN and also outperforms
the Lie unitary model. Moreover, the relaxed model is best
able to produce graphs whose smoothness matches that of
the true labels. Our results validate Proposition 7 in Kiani
et al. (2024) (also provided in Sec. A.2), which states that
GCNs with standard weight initialization tend to increase
the smoothness of input signals on the graph as measured by
the Rayleigh quotient. Crucially, our experiments reveal that
GCNs not only smooth the input signal, but they oversmooth
compared to the target signal, even when some smoothing is
desirable, i.e. the output signal is smoother than the input. In
contrast, R-UNIMESH is often initialized in an undersmooth
state and is able to learn to increase the smoothness of input
signals during training to match the smoothness of the target.
These insights extend to heat flow on more intricate mesh
datasets, as we show in Sec. 6.2.

6.2. Dynamics on Mesh Manifolds

We now consider more challenging and realistic tasks and
show that R-UNIMESH is competitive with strong baselines
and outperforms all other models on diffusive dynamics.
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Model MSE (↓) MRE (↓)

GCN 1.08 · 10−2 5.99 · 10−2

Lie Uni 0.14 · 10−2 8.86 · 10−2

R-UNIGRAPH (Ours) 0.11 · 10−2 2.07 · 10−2

Table 1. MSE and mean Rayleigh quotient error (MRE) of GCN, a
Lie unitary convolution network, and R-UNIMESH. The best run
for each method out of 5 runs is shown. The best performance is
bold.

Figure 3. Left: The dotted lines indicate the mean Rayleigh
quotient for input heat graphs at T = 3 and target graphs at T = 4.
We also show the mean Rayleigh quotient for the best performing
GCN, R-UNIGRAPH, and Lie unitary models. R-UNIGRAPH is
best at capturing the true smoothness. Right: Validation MSE of
the same three models. R-UNIGRAPH has the best performance.
Results for the full set of runs are provided in Sec. B.3.

Specifically, our experiments reveal the following practical
conclusions: (i) R-UNIMESH performs as well as strong
baselines such as mesh-aware transformers and equivariant
neural networks; (ii) R-UNIMESH is especially strong on
heat diffusion tasks; (iii) geometric inductive biases, such
as unitarity or equivariance, are important for strong per-
formance on unseen meshes with complex geometries. We
support these conclusions with simulated and real-world
dynamics datasets on mesh manifolds, including PDE solv-
ing on the PyVista (Sullivan & Kaszynski, 2019) meshes
from Park et al. (2023) and weather forecasting on the Earth
mesh from WeatherBench2 (WB2) (Rasp et al., 2024).

Baselines. We include as baselines standard GNN models
without any specific inductive biases for working on meshes,
including a GCN (Kipf & Welling, 2017) and an MPNN
(Gilmer et al., 2017). Additionally, we study symmetry pre-
serving equivariant models, including gauge and Euclidean
equivariance (formally defined in Sec. A.3). Informally, Eu-
clidean equivariant models are invariant to roto-translations
of the mesh in Cartesian coordinates and Gauge Equivari-
ant GNNs are invariant to a choice of reference angle for
models that work in local coordinates of the mesh-manifold.
These models have been shown to be particularly strong
for PDE solving on meshes (Park et al., 2023). We bench-
mark a state-of-the-art (SOTA) Euclidean equivariant model
(Satorras et al., 2021) as well as different types of Gauge
Equivariant GNNs, including convolutional with GemCNN
(de Haan et al., 2021), attentional with EMAN (Basu et al.,
2022), and message passing with Hermes (Park et al., 2023).

We also consider a SOTA mesh transformer (Janny et al.,
2023). We compare these baselines with R-UNIMESH.

Datasets. The first task is to auto-regressively predict the
solution to the heat, wave, and Cahn-Hilliard equations on
test meshes given an initial condition. These equations are
defined formally in Sec. C.1. We use the same PyVista
meshes generated in Park et al. (2023). These meshes are
highly intricate and test the models’ ability to handle non-
linear dynamics on complicated geometries. We use five
different initializations for each test mesh. Further dataset
and training details are provided in Sec. C.1 and Sec. C.2.
We will refer to this dataset as MeshPDE in the remainder
of the paper.

The second task is weather forecasting using WB2 (Rasp
et al., 2024), a widely used benchmark for data-driven global
weather forecasting based on historic data. Specifically, we
auto-regressively predict future weather conditions on Earth
given an initial condition. A formal problem statement
is in Sec. D.1. We train and evaluate our models on the
ERA5 dataset from WB2, which is the curated version of
the ERA5 reanalysis data provided by the European Centre
for Medium-Range Weather Forecasts (ECMWF) (Hers-
bach et al., 2020). We use 1.5 (240 × 120) degree spatial
resolution data with a 6 hour temporal resolution, consistent
with the evaluation performed in WB2. Further details on
mesh construction can be found in Sec. D.3. We evaluate
on two variables, temperature at pressure level 850 (T850)
and geopotential at pressure level 500 (Z500). We take data
from 2013-01-01 to 2019-12-31 UTC as training data. We
use a smaller subset of the ERA5 data that is commonly
used for other large scale data-based weather models due
to compute constraints, but remain consistent to WB2 in
evaluating on data from 2020-01-01 to 2020-12-31.

Evaluation. For MeshPDE, our metrics include normal-
ized root mean squared error (NRMSE), symmetric mean
absolute percentage error (SMAPE), and Rayleigh quotient
errors aggregated over all time-steps. In particular, the
Rayleigh error (RE) is given by:

RE(f) =
1

Tmax

Tmax∑
t

|RM(Yt)−RM(f(Xt))|.

Further details on these metrics are provided in Sec. C.3 and
we compare RE with more global smoothness metrics in
Sec. C.5. We supplement these metrics with qualitative di-
agnostic figures in Sec. C.4 and videos in the supplementary
material, showing in particular that Rayleigh errors are con-
sistent with visual assessments of smoothness. For WB2, we
report the root mean squared error (RMSE) and the anomaly
correlation coefficient (ACC), both latitude weighted as rec-
ommended by the benchmark authors. RMSE measures
forecast accuracy, while ACC is the Pearson correlation
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Metric GCN GemCNN R-UNIMESH (Ours) EMAN Transformer MPNN EGNN Hermes

Heat (α = 1)

NRMSE (↓) – – 51.9 ± 3.6 73.50 ± 3.8 92.5 ± 5.6 99.45 ± 4.8 344.25 ± 110.5 73.02 ± 4.7
SMAPE (↓) – 375.4 ± 0.53 79.7 ± 5.6 110.9 ± 13.3 213.9 ± 2.7 223.6 ± 1.5 319.33 ± 7.59 107.6 ± 7.4
RE (↓) – 52.21 ± 9.4 9.1 ± 7.4 14.2 ± 1.4 46.0 ± 3.7 76.06 ± 3.6 81.5 ± 8.77 39.76 ± 4.7

Wave (c = 1)

NRMSE (↓) – – 236.5 ± 6.4 281.3 ± 15.5 864.9 ± 184.9 563.6 ± 7.75 2280.1 ± 559.9 458.5 ± 13.0
SMAPE (↓) – 318.8 ± 3.9 385.2 ± 1.2 301.0 ± 4.2 327.0 ± 4.4 318.0 ± 2.8 354.3 ± 11.0 316.4 ± 4.5
RE (↓) – 107.9 ± 3.158 93.5 ± 25.4 73.57 ± 6.5 48.0 ± 7.9 139.3 ± 10.1 157.2 ± 14.8 70.03 ± 6.1

Cahn-Hilliard

NRMSE (↓) – 121.2 ± 1.8 123.9 ± 2.6 137.5 ± 0.69 144.4 ± 0.8 147.4 ± 11.36 1001.04 ± 5.73 122.0 ± 7.8
SMAPE (↓) – 204.3 ± 2.4 167.3 ± 10.6 143.7 ± 2.5 191.7 ± 2.0 201.22 ± 32.79 336.5 ± 2.777 173.3 ± 4.3
RE (↓) – 10.68 ± 3.3 18.9 ± 10.4 48.57 ± 3.49 27.42 ± 2.87 23.98 ± 6.51 41.8 ± 1.997 14.38 ± 11.5

Table 2. NRMSE, SMAPE, and RE averaged over all rollouts on all test meshes for the heat, wave, and Cahn-Hilliard equations. The best
values are in bold and second best are underlined. Errors and standard deviations are reported over all test meshes and initializations.
Cells with a dash (–) indicate models that do not converge for a given metric. Errors are scaled by ×196, the number of rollout timesteps.
R-UNIMESH is competitive across all tasks and excels at solving the heat equation on unseen meshes.

coefficient between forecast anomalies and ground-truth
anomalies relative to a climatological baseline. Precise defi-
nitions are provided in Sec. D.

Figure 4. The Rayleigh quotient for each timestep on an unseen
mesh for Hermes, EMAN, and R-UNIMESH models. The R-
UNIMESH is the best at capturing the true smoothness for heat.

Figure 5. RMSE and ACC as a function of lead time for all models
temperature prediction. R-UNIMESH has a competitive RMSE,
especially at early lead time. R-UNIMESH also maintains viability
for lead times of roughly 2 days according to the ECMWF baseline.
Exact values recorded in Tab. 7 (Sec. D.4).

Results. Our main result is that our R-UNIMESH model
outperforms all baselines at solving highly diffusive PDEs
and captures the true smoothness while remaining competi-
tive across all other tasks. On MeshPDE, as shown in Tab. 2,
R-UNIMESH performs particularly well on heat modeling,
where it achieves the lowest NRMSE, SMAPE, and RE.
On heat, R-UNIMESH matches the true smoothness almost
exactly at every timestep, as seen in Fig. 4, illustrating that
R-UNIMESH is best at capturing the underlying differential

structure of the PDE solution. The convergence and smooth-
ness errors reported by our metrics also agree visually with
our qualitative diagnostics in Fig. 1 and in Sec. C.4.

Another important finding is that nearly all models are able
to perform comparably well on the Cahn-Hilliard equation,
where the test mesh (toroid) is simple. The only exceptions
are GCN and EGNN, which struggle across all tasks. This
suggests that stronger geometric inductive biases such as
unitarity or gauge equivariance are necessary for strong
performance on unseen meshes with complex geometries.

On the real-world WB2 benchmark (Fig. 5), we see that our
best performing models are comparable with the state of the
art (Rasp et al., 2024) in RMSE and ACC, coming within
a couple of degrees of SOTA even at 10 lead days. This is
despite restricting our training set size and model parameters
due to compute limitations. We show in Sec. D.4 that R-
UNIMESH is among the best models for the geopotential
prediction task, though all models are below the SOTA in
Rasp et al. (2024). Our results also support our earlier
finding that geometric inductive biases matter for complex
geometries: the equivariant and unitary models show no
significant advantages in this setting, where there is no cross
mesh generalization. Finally, we show in Sec. D.5 that
R-UNIMESH is competitive in terms of RE on both WB2
variables.

7. Conclusion
Our work clarifies the approximation limits of smoothness
preserving (unitary) functions and unitary convolution net-
works and shows how constraint relaxations can aid perfor-
mance on various dynamics modeling tasks on graphs and
meshes. We contribute R-UNIGRAPH and R-UNIMESH ,
which provide SOTA performance on diffusive dynamics
problems and excel at capturing the true smoothness of the
system. Future work will explore using approximately uni-
tary networks for solving PDEs under partial observability
by using them as backbones for generative models.

8



Smoothness Errors in Dynamics Models and How to Avoid Them

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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A. Deferred Theory
This section provides both theoretical background and deferred proofs from the main text.

A.1. Lie Algebras and the Exponential Map

In this section we review the formalism behind Lie algebras and the exponential map. A group is a mathematical structure
that formalizes what it means for something to be symmetric. We say that a group is a matrix Lie group, if it is a differentiable
manifold and a subgroup of the set of invertible n× n matrices. Lie groups are equipped with a Lie algebra, which is the
tangent space at the identity element. Our work encounters the orthogonal and unitary Lie groups

O(n) = {O ∈ Rn×n : OOT = I}, U(n) = {U ∈ Cn×n : UU† = I}

as well as the special unitary group
SU(n) = {U ∈ Cn×n : det(U) = 1}.

The associated Lie algebras for O(n) and U(n) are given by

o(n) = {M ∈ Rn×n : M +MT = 0}, u(n) = {M ∈ Cn×n : M +M† = 0}.

The exponential map provides a mechanism of parameterizing Lie groups with elements in the Lie algebra. For matrix Lie
groups, the exponential map is simply the matrix exponential:

exp(X) =

∞∑
i

1

i!
Xi.

Applying the exponential map to a linear operator is given by

exp(L)(X) =

∞∑
i

1

i!
Li(X) = X+ L(X) +

1

2
L ◦ L(X) +

1

6
L ◦ L ◦ L(X) + . . .

In the case of Eq. 3, L is graph convolution, L(X) = AXW. Further background on group theory and abstract algebra can
be found in Artin (1998), Hall (2013), and Esteves (2020).

A.2. Convolutional oversmoothing

This section provides a result from Kiani et al. (2024) which establishes that Graph Convolution Networks (Kipf & Welling,
2017) have a high probability to exhibit smoothing.

Proposition 3 (Proposition 7 in Kiani et al. (2024)). Given a simple undirected graph G on n nodes with normalized
adjacency matrix Ã = D−1/2AD−1/2 and node degree bounded by D, let X ∈ Rn×d have rows drawn i.i.d. from the
uniform distribution on the hypersphere in dimension d. Let fconv(X) = ÃXW denote convolution with orthogonal feature
transformation matrix W ∈ O(d). Then, the event below holds with probability 1− exp(−Ω(

√
n)):

RG(X) ≥ 1−O

(
1

n1/4

)
and RG(fconv(X)) ≤ 1− Tr(Ã3)

Tr(Ã2)
+O

(
1

n1/4

)
.

A.3. Gauge and Euclidean Equivariance

In this section, we introduce the necessary background and formal definitions for the equivariance constraints commonly
applied to tasks defined on meshes. While working with arbitrary meshes, many commonly used network architectures
compute distances between node positions. One has the option of computing these distances in either global Cartesian
coordinates or in local tangent spaces of the mesh. In both cases, we may exploit the symmetry of these coordinate systems
by enforcing equivariance with respect to transformations from a certain symmetry group into the network architecture,
which allows the network to automatically generalize across orbits.

We now give precise definitions of equivariance and invariance.
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Definition 4. Let f : X → Y be a map between input and output vector spaces X and Y . Let G be a group with
representations ρX and ρY which transform vectors in X and Y respectively. Representations are group homomorphisms
which map group elements to invertible linear transformations. The map f : X → Y is equivariant if

ρY(g)f(x) = f(ρX (g)x) , for all g ∈ G, x ∈ X .

Invariance is a special case of equivariance in which ρY = IdY for all g ∈ G. With an invariant operator, the output of f is
unaffected by the transformations applied to the input.

Definition 5. A map f : X → Y is invariant if

f(x) = f(ρX (g)x) , for all g ∈ G, x ∈ X .

A.3.1. EUCLIDEAN EQUIVARIANCE

For a mesh defined over a global coordinate system, a common choice of symmetry constraint is equivariance to the
Euclidean group in n dimensions, E(n). In this setting, the mesh is treated as a graph with positional encodings, and the
equivariance constraint ensures generalization to different roto-translations of the mesh.

Definition 6. Let t ∈ Rn be a translation vector and Q ∈ Rn×n an orthogonal matrix representing a rotation or reflection.
A function f is equivariant to the Euclidean group E(n) if for any t ∈ Rn and Q ∈ Rn×n we have

f(Qx+ t) = Qf(x) + t.

A.3.2. GAUGE EQUIVARIANCE

We may also choose to embed coordinates locally, using coordinates that are intrinsic to the 2D mesh rather than the extrinsic
3D coordinates of the embedding space. This approach arises from the desire for a general convolution-like operator
over arbitrary manifolds discretized as a mesh. To encode data over a mesh it is still necessary to make a choice of local
coordinate frame at each vertex. In order to guarantee the equivalence of the features resulting from different choices of
reference frames, the model should be invariant to change of coordinates frame at each vertex, i.e. gauge equivariant.

We specifically adapt the strategy described in de Haan et al. (2021) and define the local coordinate frame at each vertex in
terms of a reference neighboring vertex. Denote va as the reference neighbor for gauge A, in which the neighbors have
angles θA, and denote vb as the reference neighbor for gauge B with angles θB . Comparing the two gauges, we see that they
are related by a rotation of angle ϕ, so that θB = θA − ϕ. This change of gauge is called a gauge transformation of angle
g := ϕ.

Definition 7 (Equations 3 and 4 in de Haan et al. (2021)). Let ρin and ρout be input and output types with dimensions Cin
and Cout. Let Kself ∈ RCout×Cin and Kneigh : [0, 2π) → RCout×Cin be two kernels. We say the kernels are gauge equivariant if
for any gauge transformation g ∈ [0, 2π) and for any angle θ ∈ [0, 2π) we have

Kneigh(θ − g) = ρout(−g)Kneigh(θ)ρin(g), Kself = ρout(−g)Kself ρin(g).

Finally, as features at different nodes live in different tangent spaces and thus have different gauges, it is invalid to sum
them directly. Let fp and fq be node features of a pair of neighboring nodes p and q. Before performing gauge equivariant
convolution, we must parallel transport each fq to TpM along the mesh edge that connects the two vertices for them to be in
the same gauge. For more details, we refer the reader to de Haan et al. (2021).

A.4. Unitary Learning Framework

This section provides rigorous definitions for the mathematical tools used in the main text and additionally clarifies necessary
hypotheses.

We start with the fundamental domain. Assume X has dimension n. Let d be the dimension of a generic orbit of G in X .
Let ν be the (n− d) dimensional Hausdorff measure in X .

Definition 8 (Fundamental Domain, Definition 4.1 in Wang et al. (2023)). A closed subset F of X is called a fundamental
domain of G in X if X is the union of conjugates of F , i.e., X = ∪g∈GgF , and the intersection of any two conjugates has
measure 0 under ν.
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Next, we note that our proof of Theorem 1 satisfies the integrability assumption on the fundamental domain F and orbits
Gz established in Wang et al. (2023):

Assumption 2 (Integrability Hypothesis, Sec. A in Wang et al. (2023)). The fundamental domain F and orbit Gx are
differentiable manifolds and the union of all pairwise intersections ∩g1 ̸=g2(g1F ∩ g2F ) has measure zero.

We now provide more formal definitions for EGx[f ] and VGx[f ] used in Proposition 2. Denote by q(z) = p(z)
p(Gx) the density

of the orbit Gx so that
∫
Gx

q(z)dz = 1. The mean and variance of a function f on Gx are given by

EGx[f ] =

∫
Gx

q(z)f(z)dz, VGx[f ] =

∫
Gx

q(z)∥EGx[f ]− f(z)∥22dz.

A.5. Proof of Main Theorem

We now provide proof of our main theoretical result in the main text. We repeat the theorem here for convenience.

Theorem 1. Let F be a fundamental domain of SU(n) in Z. In particular, F = {te : t ∈ R+} where e is a standard basis
vector of Cn. The approximation error lower bound can be expressed as∫

Z

p(z)∥u(z)− f(z)∥22dz ≥
∫
F

p(∥te∥)VGz[∥f∥]dz.

Proof of Theorem 1. By the reverse triangle inequality,∫
Z

p(z)∥u(z)− f(z)∥22dz ≥
∫
Z

p(z) (∥u(z)∥ − ∥f(z)∥)2 dz.

Notice that ∥u(z)∥ is invariant under the action of SU(n) on the sphere S2n−1 with radius ∥te∥ and recall that SU(n) acts
transitively on the sphere. Thus, F = {te : t ∈ R+} is a valid fundamental domain that indexes each orbit Gz, the spheres
with radii ∥te∥. Our theorem then follows from Proposition 2.

In the following example, we show how this bound may be computed.

Example 1 (Variance on the Unit Disk). Denote by D2 the unit disk D2 = {(x, y) : x2 + y2 ≤ 1}. Let Z = R2 be a
domain with density

p =

{
1
π , (x, y) ∈ D2

0, Otherwise.

Denote by f a function in polar coordinates given by

f : (θ, r) → R2

θ 7→ (sin θ + r, cos θ + r).

On each orbit, we compute

EGz
[f ] = (r, r), VGz

[f ] = 1, p(r) =

{
2r, r ≤ 1

0, otherwise.

The approximation error bound of a unitary function u of f is then∫
Z

p(z)∥u(z)− f(z)∥22dz ≥
∫
F

p(r)VGz
[f ]dr =

∫ 1

0

2r(1)dr = 1.

A.6. Unitary Convolution on Meshes

In this section, we prove Corollary 1 stated in Sec. 5.3 and repeated here for convenience.

Corollary 1 (Corollary to Proposition 1). Given a mesh M with normalized adjacency matrix Ã = D−1/2(W⊙A)D−1/2

that satisfies Assumption 1, the mesh Rayleigh quotient is invariant under normalized unitary or orthogonal graph convolution,
i.e. RM(X) = RM(fUniMeshConv(X)) where fUniMeshConv is either separable or Lie.
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Our proof follows the same structure as the proof of Proposition 1 in Kiani et al. (2024) with modifications to account for
the weighted adjacency matrix. Namely, we invoke Assumption 1 which ensures that fUniMeshConv is norm preserving and
therefore the the strategy in Kiani et al. (2024) still holds.

Proof. We first prove invariance for Eq. 8. By the circulant property of the trace,

Tr

((
exp(iÃ)XU

)† (
I− Ã

)(
exp(iÃ)XU

))
= Tr

(
X† exp(−iÃ)

(
I− Ã

)
exp(iÃ)X

)
.

Because exp(−iÃ), exp(iÃ), and (I− Ã) share an eigenbasis, they commute, so

Tr

((
exp(iÃ)XU

)† (
I− Ã

)(
exp(iÃ)XU

))
= Tr

(
X†

(
I− Ã

)
X
)
.

For the denominator, we need to show that ∥exp(iÃ)XU∥2F = ∥X∥2F . By Assumption 1 we have that W is sym-
metric. Because A is also symmetric, we have that iÃ is skew-symmetric and therefore exp(iÃ) ∈ SU(n). Thus,
∥exp(iÃ)XU∥2F = ∥X∥2F and finally RM(X) = RM(fUniMeshConv(X)).

We now show that Eq. 9 also preserves the Rayleigh quotient. First, we need to show that ∥exp(AXW)∥2F = ∥X∥2F . To do
this, we note that Eq. 9 can equivalently be viewed us a function that acts on a vector in Cnd. By properties of the Kroneckor
tensor product,

fUniMeshConv(X;A) = exp(AXW) ⇐⇒ vec (fUniMeshConv(X;A)) = exp
(
A⊗WT

)
vec(X).

Since (
A⊗WT

)
+
(
A⊗WT

)†
= A⊗

(
W +W†)T = 0,

we have that
(
A⊗WT

)
is in the lie algebra of the unitary group and therefore preserves the norm of vec(X). This holds

for any symmetric edge weighting Ã = W ⊙A, which is guaranteed by Assumption 1. Thus, ∥exp(AXW)∥2F = ∥X∥2F .

Next, note that exp
(
Ã⊗WT

)
commutes with (Ã⊗ I). Thus,

Tr
(
fUniMeshConv(X; Ã)†(I− Ã)fUniMeshConv(X; Ã)

)
= vec(X)† exp(Ã⊗WT)†

[
(I− Ã)⊗ I

]
exp(Ã⊗WT)vec(X)

= vec(X)†
[
(I− Ã)⊗ I

]
vec(X).

Multipliying the above by ∥X∥−2
F recovers RM(X). We conclude that RM(X) = RM(f(X)).

Remark 2. Corollary 1 was applied to convolution with the symmetric cotangent weights in Eq. 7, but the proof extends
without loss of generality to any set of symmetric weights.

A.7. Discrete Differential Geometry

We provide further details and visualizations for concepts in discrete differential geometry, including the mesh manifold
condition, the cotangent Laplacian, and Delaunay criterion. We also review results from the literature that suggests that the
mesh edge rewiring algorithm used by the Robust Laplacian is a safe choice for the task of PDE solving. For additional
reference on these topics, see Meyer et al. (2003) and Crane et al. (2013).

The Manifold Condition Our work makes use of the assumption that a given mesh is manifold. We recall the following
definition of the mesh manifold condition:
Definition 9 (Manifold Condition, (Sharp & Crane, 2020)). An interior (or boundary) edge ij is manifold if it is contained
in exactly two (or one) triangles; an interior (or boundary) vertex i is manifold if the boundary of all triangles incident on i
forms a single loop (or path) of edges.

Alternative definitions for the manifold condition often state that a mesh is manifold if interior vertices have local neighbor-
hoods that are homeomorphic to the unit disk and boundary vertices are homeomorphic to the half disk. We refer specifically
to Definition 9 when we talk about a mesh being manifold in the paper.
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Cotangent Laplacian Area Normalization. Recall that for a scalar function s on mesh vertices we the cotangent
Laplacian is defined as

(L̃(s))i =
1

2Ai

∑
j∈N (i)

(cotαij + cotβij) (sj − si)

where N (i) denotes the adjacent vertices of i, αij and βij are the angles opposite edge (i, j), and Ai is the vertex area of i
and that we use the barycentric cell area for Ai. In particular, let Aabc be the area of a triangular face with vertices abc and
let F(i) be the set of faces containing vertex i. The barycentric cell area is defined

Ai =
∑

abc∈F(i)

Aabc/3.

Normalization by the cell area was used for the dataset construction in Park et al. (2023), but it is not used in the definition
of the Robust Laplacian (Sharp & Crane, 2020). In fact, the cell area introduces asymmetry in the edge weights. This is
undesirable, as unitary mesh convolution depends on symmetric edge weights in order to preserve the Rayleigh quotient.

Cotangent Laplacian Edge Weights and Robust Rewiring. As noted in Sec. 5.3, an arbitrary mesh may have negative
cotangent weights. These cotangent weights have the following geometric meaning. For vertices ij connected by an edge,
we say that the edge is primal. For manifold meshes, for each primal edge there exists a dual edge that connects the triangle
circumcenters for the two triangles that share a primal edge. The cotangent weights correspond to the ratio of the primal
and dual edge lengths for vertices ij (Crane et al., 2013). The weights are positive when the angles αij + βij ≤ π. The
Robust Laplacian applies two edge rewiring algorithms sequentially, the tufted cover algorithm and the Delaunay edge flip
algorithm. The tufted cover algorithm ensures the mesh is manifold so that the Delaunay edge flip algorithm can be applied.
The Delaunay edge flip algorithm then ensures that the mesh satisfies the intrinsic Delaunay criterion (Definition 2). A
sample edge flip is illustrated in Fig. 6.

ɑij

𝛽ij

ɑij 𝛽ij+ > π ɑ*
ij 𝛽*

ij+ < π

ɑ*
ij

𝛽*
ijEdge Flip

i

j

i

j

Figure 6. Illustration of an intrinsic Delaunay edge flip performed by the Robust Laplacian edge rewiring algorithm. This figure is a
reproduced version of Figure 7, Sharp & Crane (2020).

Sharp & Crane (2020) note that from a finite element perspective, changing the triangulation via Delaunay edge-flipping
effectively just provides a different set of linear basis functions for the same polyhedral domain. Thus, the only practical
concern is whether the tufted cover algorithm, which ensures that the mesh is manifold, does not dramatically change the
connectivity. Empirical results from Sharp & Crane (2020) find that the Robust Laplacian greatly improves performance
computing geodesic distances with the heat method (Crane et al., 2017), which depends on numerical PDE solving on highly
nonmanifold meshes with the cotangent Laplacian. This provides confidence that the tufted cover algorithm improves the
edge-weighting scheme for unitary mesh convolution. See Crane et al. (2017) for additional reference on numerical PDE
solving on nonmanifold meshes.

A.8. Rayleigh Quotient Sensitivity

We include results from Ferrandi & Hochstenbach (2024) and Dong et al. (2024) that illustrate the sensitivity of the Rayleigh
quotient to small perturbations of the input, such as Taylor series truncation errors. While the hypotheses are stronger than
what we may actually see in practice, the following proposition provides an intuition for the Rayleigh quotient sensitivity.
Proposition 4 (Proposition 4 in Ferrandi & Hochstenbach (2024)). Suppose u = x+ e is an approximate eigenvector
corresponding to a simple eigenvalue λ ̸= 0 of a symmetric A, with ∥x∥ = 1, e ⊥ x, and ε = ∥e∥. Then, up to O(ε4)-terms,
for the sensitivity of the Rayleigh quotient (as a function of u) it holds that

min
λi ̸=λ

|λi − λ|
|λi|

ε2 ≲
|RG(u)− λ|

|λ|
≲ max

λi ̸=λ

|λi − λ|
|λi|

ε2.
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This indicates that the Rayleigh quotient sensitivity is quadratic in perturbations ε. For ε < 1, this means that the sensitivity
of the Rayleigh quotient is even less than the truncation error. We also have the following results from Dong et al. (2024):

Proposition 5 (Theorem 1 in Dong et al. (2024)). For any given graph G, if there exists a perturbation ∆ on L, the change
of Rayleigh quotient can be bounded by ∥∆∥2.

Proposition 6 (Theorem 2 in Dong et al. (2024)). For any given graph G, if there exists a perturbation δ on x, the change
of Rayleigh quotient can be bounded by 2xTLδ + o(δ). If δ is small enough, in which case o(δ) can be ignored, the change
can be further bounded by 2xTLδ.

The results from Dong et al. (2024) state fewer hypotheses than Ferrandi & Hochstenbach (2024). Proposition 5 outlines a
bound similar to Proposition 4 in that they are both related to the norm of the perturbing vector, and Proposition 6 states an
alternative bound related to the graph’s Laplacian.

B. Simulated Heat Diffusion Further Details
B.1. Simulated Heat Diffusion Dataset

This section details dataset generation specifications for our experiment in Sec. 6.1. We generate grid-graphs with an average
of 10 nodes and a standard deviation of 2 nodes. On the grid we randomly set 20 nodes to be heat sources. They are given a
heat value of 1 and all other nodes start at 0. Using PyGSP, We simulate heat flow on 10, 000 graphs for training, and the
task is to predict the next time step given the previous one. The simulation proceeds until time T = 10 in increments of
∆T = 0.5 time steps. A sample graph data point is given in Fig. 7.

Figure 7. Sample heat diffusion process on a grid discretized as a graph. Node neighbors are the nodes that sit adjacent in the grid.

B.2. Taylor Series Sensitivity Analysis

We conduct a sensitivity analysis of the Rayleigh quotient to different Taylor series truncations. For completeness, we
also compare with standard GCNs and Separable unitary networks. We study these tendencies at initialization for the heat
diffusion dataset that is used for the experiment in Sec. 6.1, described further in Sec. B.1. Our analysis echos a theme similar
to Gruver et al. (2023) and Gao et al. (2025) that practitioners should be more thorough in evaluating when numerical
approximations break strict theoretical guarantees.

Experimental Setup. We simulate heat diffusion on a grid graph and use time step 3 to conduct the sensitivity analysis.
We evaluate on the models fGCN, fSepUniConv, and fLieUniConv. For each model f and truncation length Tmax ∈
{1, . . . , 10}, we compute the Rayleigh quotients RG(X) and RG(f(X)) for all graph mini batches X. We denote the
distribution of Rayleigh quotients before applying the model by PX and after applying the model by Pf(X). To quantify the
deviation between these distributions, we compute the KL divergence DKL

(
PX ∥ Pf(X)

)
, which measures the change in

the distribution of Rayleigh quotients caused by the model at initialization.

Results. We see in Fig. 8 the effect of Taylor series truncation on the unitarity of the network. In particular, we observe that
the KL divergence between the two distributions decreases exponentially with the number of terms. This is to be expected,
we know from Taylor’s theorem that a truncation at term t gives truncation error O

(
[∥AXW∥O]t+1∥X∥2

(t+1)!

)
where ∥·∥O is the

operator norm. Furthermore, works such as Ferrandi & Hochstenbach (2024) and Dong et al. (2024) show theoretically
that small truncation errors will not compound into large deviations in the Rayleigh quotient. For details on the relevant
propositions from Ferrandi & Hochstenbach (2024) and Dong et al. (2024), see Sec. A.8.
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Figure 8. KL divergence between distribution of Rayleigh quotients before and after applying the model. Results are averaged over 10
runs.

In the supplementary material we include a video that shows the evolving Rayleigh quotient distribution as we increase
Tmax. Fig. 8 is also clickable and links to the same video in our anonymous artifact.

B.3. Heat Diffusion Model Ensembles

This section provides the results for Sec. 6.1 for a larger ensemble of models. In Fig. 9, we see that the training runs in
Fig. 3 occur frequently, with only a couple runs diverging.

Figure 9. Top: Validation MSE for an ensemble of 5 runs for a GCN (left), R-UNIGRAPH (middle), and a Lie unitary convolution network
(right) at timestep t = 3. R-UNIGRAPH significantly outperforms the GCN and also outperforms the Lie unitary network. Bottom: The
average Rayleigh quotient over all graphs for an ensemble of 5 runs for the same models at timestep t = 3. The GCN is under constrained
and biased towards oversmoothing at initialization. R-UNIGRAPH is able to roughly match the true smoothness of the labeled graphs.
The Lie unitary network is overconstrained and can not model the Rayleigh quotient of the labels because it is forced to preserve the
Rayleigh quotient of the input graphs.

C. PyVista Mesh Training Details, Evaluation Details, and Further Experiments
This section provides extra experimental details and results for our dynamical systems modeling on PyVista meshes.

C.1. PyVista Mesh Dynamical Systems

This section provides details on the PDEs to be solved on the PyVista meshes. Before defining the PDEs to be solved, let
us establish notation. Let α be the thermal diffusivity, and c a constant. The heat and wave equations on the mesh are then
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given by

∂u

∂t
= αL̃u, (Heat)

∂2u

∂t2
= c2L̃u, (Wave).

We now define the Cahn-Hilliard equation (Cahn & Hilliard, 1958). Let c be the fluid concentration, M the diffusion
coefficient, µ the chemical potential, f the double-free energy function, and λ a positive constant. The Cahn-Hilliard
equation is often represented by the following two coupled second order equations:

∂c

∂t
−M L̃(µ) = 0, µ− ∂f

∂c
+ λL̃(c) = 0.

Here, the double-free energy function is given by f(c) = 100c2(1− c2). Sample initial conditions for each equation on the
PyVista meshes are shown in Tab. 3 and Tab. 4.

C.2. PyVista Mesh Training Details

We extend the publicly available code base from Park et al. (2023) to train our baselines for the PyVista and WeatherBench2
datasets: https://github.com/jypark0/hermes/. For GemCNN, EMAN, and Hermes, we use the already
available pretrained model checkpoints. For GCN, R-UNIMESH, Mesh Transformer, MPNN, and EGNN we train our own
models. We use the same train / test split for the meshes as in Park et al. (2023). We performed ablations over learning rate
and latent space sizes. Following Park et al. (2023) we keep models within a ∼ 40, 000− 50, 000 parameter budget. We
note that this budget is relatively small, and that models that diverge in our experiments could potentially perform better
under a more forgiving budget. All runs were performed on a single H200 GPU (NVIDIA, 2025). We use the previous 5
time steps as input node feature vectors and backpropagate through 3 steps of auto-regressive inference.

Hyperparameters are given in our artifact. Defaults are taken from Park et al. (2023) if provided and otherwise optimized via
grid search. Considered hyperparameters include learning rate, optimizer, training epochs, latent size, and skip connections.
We also consider z-scoring of normed edge lengths for EGNN, different decoder heads for R-UNIMESH, and the number of
clusters for the mesh transformer.

As observed in Park et al. (2023), we notice that residual connections can be key for performance with the gauge equivariant
models. For R-UNIMESH, we found that using a MLP readout with sinusoidal activation functions was a key ingredient for
strong performance on MeshPDE. This supports previous work on how to train GNNs for long range tasks (Tönshoff et al.,
2023; 2024). However, the GCN decoder exhibited the best performance on WB2.

C.3. PyVista Evaluation Details

In order to aggregate smoothness errors over all time steps, we introduce a new metric. Define the Rayleigh Error (RE) by∫∞
0

|RM(Yt)− RM(f(Xt))|dt. In practice we approximate this by summing over the time steps where we are able to
perform inference and normalize to the max timestep:

RE(f) =
1

Tmax

Tmax∑
t

|RM(Yt)−RM(f(Xt))|.

Following Janny et al. (2023) and Pandya et al. (2025), we also consider the scale invariant metrics NRMSE and SMAPE
averaged over the entire rollout:

NRMSE(f) =
1

Tmax

Tmax∑
t

√
1
n

∑n
i=1 (f(Xt)i − (Yt)i)

2

1
n

∑n
i=1(Yt)2i

SMAPE(f) =
1

Tmax

Tmax∑
t

1

n

n∑
i=1

2|(Yt)i − f(Xt)i|
|(Yt)i|+ |f(Xt)i|+ ε

where ε = 10−8 is a stability constant. SMAPE is generally more robust than NMRSE in that it is less sensitive to outliers,
but it is also more sensitive to small values. The scale invariant property of these metrics is crucial especially for heat
diffusivity because solutions tend to decrease proportionally to e−t. Thus, we need to consider deviations across several
orders of magnitude in order to see how accurately we are modeling the decay.
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Mesh Heat T = 0 Wave T = 0

Armadillo

Bunny

Lucy

Sphere

Spider

Urn

Woman
Table 3. Sample initializations for the heat and wave equations on the PyVista meshes.
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Mesh Cahn-Hilliard T = 0

Bunny

Ellipsoid

Sphere

Super Toroid
Table 4. Sample initializations for the Cahn-Hilliard equation on the PyVista meshes.

C.4. PyVista Mesh Qualitative Diagnostics

In this section, we validate the superior performance of R-UNIMESH on solving the heat equation with qualitative diagnostics.
In Tab. 5 we show that R-UNIMESH is the best at capturing the true smoothness of an unseen mesh during each step of the
rollout. In the supplementary material we include a video corresponding to the rollout in Tab. 5 over all timesteps.

C.5. Beyond 1−hop Smoothness

Since the Rayleigh quotient is a 1−hop metric, this section performs additional comparisons with a more global smoothness
metric and finds that our 1−hop smoothness tendencies also hold more generally for the gauge equivariant models we study.
In particular, we define smoothness according to the 2−point correlation function. Let δ : R3 → R be a function that maps
a point x on a mesh to the scalar solution u(x) (or approximation thereof) to the PDE at that point. The smoothness is then
defined by the 2−point correlation function ξ given in Eq. 10:

ξ(r; δ) = E [δ(x)δ(x+ r)] . (10)

Intuitively, if node features are similar at a distance of r apart, the correlation will be high. This allows us to study
smoothness beyond 1−hop neighbors by considering larger r. Fig. 10 shows an example correlation function for Hermes at
a given time step. We note that this characterization of smoothness is common in the weak gravitational lensing literature
for point-cloud datasets (Schneider, 2006) and are easily computed with the TreeCorr library (Jarvis et al., 2004).

Let δij be the scalar field for the ground truth on a mesh Mi at time step j and δ̂ij be the approximation thereof. We define
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Time Truth R-UNIMESH (Ours) EMAN Hermes

10

50

100

150

190

Table 5. Qualitative comparison of model performance for the heat equation on the armadillo mesh. Our R-UNIMESH model remains
faithful to the ground truth during each step of the rollout, whereas the EMAN model over smooths and the Hermes model under smooths.

our smoothness error by

errsmooth(δ̂ij) =
1

rbins

1

Tmax

1

N

N∑
i=1

Tmax∑
j=1

rbins∑
k=1

|ξ(rk; δij)− ξ(rk; δ̂ij)|.

We note that the correlation function is related to the Fourier space power spectrum P (k) by

ξ(r) =
1

2π2

∫
k2P (k)

sin(kr)

kr
dk. (11)

Thus, Eq. 11 informs us that our metric for smoothness as a function of r is related to traditional energy spectrum errors
(e.g., Wang et al., 2021). We leave a more systematic comparison between the measures as an opportunity for future work.

As seen in Tab. 6, the more expressive attention and message passing based models are much better at capturing the
underlying smoothness. The CNN model diverges for the heat and wave datasets, but performs reasonably well on
Cahn-Hilliard. This is mirrored by our results in Tab. 2 in the main text for the Gauge Equivariant models.
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Figure 10. Smoothness for a Hermes model as measured by the 2−point correlation function. The plot indicates undersmoothing in each
radial bin.

Heat (α = 1)

Model errsmooth (↓)
GemCNN –
EMAN 4.04× 10−3

Hermes 9.71× 10−3

Wave (c = 1)

Model errsmooth (↓)
GemCNN –
EMAN 1.78× 10−3

Hermes 1.38× 10−2

Cahn–Hilliard

Model errsmooth (↓)
GemCNN 1.89× 10−1

EMAN 4.59× 10−1

Hermes 9.61× 10−3

Table 6. errsmooth for Gauge Equivariant models on the PyVista Mesh datasets. Dashes (–) indicate non-convergence. Best performing
model is indicated with bold text.

D. WeatherBench2 Further Details
We lay out the relevant training, evaluation, and dataset details for WB2.

D.1. Training Details and Problem Statement

Our WB2 problem statement is as follows. Given a dataset D = {Xi}Ni=1 of historical weather data, the task of weather
forecasting is to predict future weather conditions XT ∈ RV×H×W given initial conditions {Xi}Ki=1, Xi ∈ RV×H×W ,
where T is the target lead time, K is the number of input time steps to the model, V is the number of atmospheric variables,
and H ×W is the spatial resolution of the data, which depends on how densely we grid the globe. We follow the same
training and hyper parameter optimization strategy as in Sec. C.2. The only difference is that we use the 3 previous time
steps as input instead of 5. All models are given a consistent compute budget of 8 hours on an NVIDIA H200 GPU for up to
100 epochs.
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D.2. Evaluation Details

Here we give precise definitions of the evaluation and metrics omitted in the main text. We begin by establishing some
notation common to the subsections, and consistent with the notation used in (Rasp et al., 2024).

Let f denote the forecast, o the ground-truth observation, and c the climatology. Let t ∈ {1, . . . , T} denote the verification
time, l ∈ {1, . . . , L} the lead time, i ∈ {1, . . . , I} the latitude index, and j ∈ {1, . . . , J} the longitude index. Forecasts are
indexed as ft,l,i,j , while observations and climatology are indexed by absolute time as ot,i,j and ct,i,j .

D.2.1. LATITUDE WEIGHTING

In an equiangular latitude-longitude grid, grid cells at the poles have a much smaller area compared to grid cells at the
equator. Weighting all cells equally in the computation of RMSE and ACC would result in an inordinate bias towards the
polar regions. As a result both metrics are latitude-weighted with weights computed as follows:

w(i) =
sin θui − sin θli

1
I

∑I
i (sin θ

u
t − sin θli)

,

where θui and θli indicate upper and lower latitude bounds, respectively.

D.2.2. CLIMATOLOGY

The climatology c is a function of the day of year and time of day, it is computed by taking the mean of ERA5 data from
1990 to 2019 (inclusive) for each grid point. A sliding window of 61 days is used around each day of year and time of
day combination with weights linearly decaying to zero from the center. For notational consistency, we also define the
lead-time–indexed climatology ct,l,i,j := ct+l,i,j , corresponding to the climatology at the forecast valid time.

D.2.3. ROOT MEAN SQUARED ERROR (RMSE)

Following the WB2 convention, our work measures error in terms of RMSE. For each variable and level pair, the RMSE at
lead time l is defined as:

RMSEl =

√√√√ 1

TIJ

T∑
t

I∑
i

J∑
j

w(i)(ft,l,i,j − ot,i,j)2.

This choice is important for temperature forecasting, as we are invariant to choice of unit (e.g., temperature in terms of
Kelvin and Celsius will have the same RMSE). Moreover, the change in scale over time is less dramatic as it was for the
PyVista meshes, where we considered NRMSE.

D.2.4. ANOMALY CORRELATION COEFFICIENT (ACC)

The ACC is computed as the Pearson correlation coefficient of the anomalies with respect to the climatology c. Denote the
differences between forecast and climatology and between observation and climatology by

f ′
t,l,i,j = ft,l,i,j − ct,l,i,j ; o′t,i,j = ot,i,j − ct,i,j .

The ACC at lead time l is then defined as

ACCl =
1

T

T∑
t

∑I
i

∑J
j w(i)f ′

t,l,i,j o
′
t,i,j√∑I

i

∑J
j w(i)f ′

t,l,i,j
2 ∑I

i

∑J
j w(i)o′t,i,j

2
.

ACC ranges from 1, indicating perfect correlation, to −1, indicating perfect anti-correlation. The ECMWF states that
when the ACC value falls below 0.6, it is considered that the positioning of synoptic scale features ceases to have value for
forecasting purposes.

D.3. Earth Mesh Discretization

We construct a spherical mesh of the Earth by directly projecting the latitude–longitude grid points onto the unit sphere,
and define mesh connectivity according to the original grid neighborhood structure. In order to obtain triangular faces, we
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further subdivide each cell into two triangles. The resulting mesh has 29040 nodes, 57600 faces, and 86640 edges. We
note that this mesh construction is simpler than those used in other graph-based models, such as GraphCast (Lam et al.,
2023), which employs a subdivided icosahedron as the underlying mesh. However, our approach has the advantage that it
operates directly on the native latitude–longitude grid and therefore does not require interpolation or regridding of the ERA5
data. Although more elaborate mesh constructions is likely to improve performance in real weather forecasting applications,
our focus is on methodological experimentation rather than optimized weather prediction, and we therefore leave mesh
optimization as an opportunity for future work.

D.4. Temperature and Geopotential Extended Results

We report the RMSE and ACC curves for all lead times. We see in Fig. 11 that R-UNIMESH stays valid for the longest lead
time in terms of ACC, and is rivaled only by GemCNN in terms of RMSE for Geopotential. The results of Fig. 5 and Fig. 11
are also given as a table in Tab. 7.

Figure 11. RMSE and ACC as a function of lead time for all models geopotential prediction. R-UNIMESH has a competitive RMSE,
especially at early lead time. R-UNIMESH also maintains viability for lead times of roughly 2 days according to the ECMWF baseline.

D.5. Smoothness Extended Results

We provide smoothness errors for all models on WB2 temperature and geopotential datasets. As seen in Tab. 8, R-UNIMESH
is competitive across both temperature and geopotential, and is within statistical significance of the best performing EGNN
model on geopotential.
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Model Metric 6h 12h 18h 24h 30h 36h 42h 48h 240h

EGNN

Z500 ACC 0.909 0.946 0.948 0.912 0.835 0.747 0.639 0.538 -0.134
Z500 RMSE 347.83 266.96 261.09 340.43 467.68 581.20 706.01 812.70 3769.31
T850 ACC 0.840 0.923 0.894 0.817 0.725 0.637 0.541 0.456 0.093
T850 RMSE 1.94 1.32 1.54 2.02 2.46 2.81 3.17 3.47 6.71

EMAN

Z500 ACC 0.114 0.125 0.121 0.123 0.120 0.122 0.123 0.123 0.127
Z500 RMSE 39530.01 52028.53 65037.68 89210.70 103179.47 119529.81 139314.85 156786.23 4898180.46
T850 ACC -0.016 -0.011 -0.025 -0.029 -0.029 -0.028 -0.028 -0.028 -0.007
T850 RMSE 19.87 26.34 29.95 33.25 35.42 37.73 39.95 43.95 1097293305.30

GCN

Z500 ACC 0.280 0.155 0.068 0.020 -0.011 -0.032 -0.052 -0.070 -0.101
Z500 RMSE 1897.27 2205.72 2491.37 2616.58 2798.23 3009.40 3272.80 3552.62 13147.85
T850 ACC 0.287 0.170 0.087 0.030 -0.006 -0.025 -0.033 -0.031 0.093
T850 RMSE 6.15 7.02 8.29 10.90 21.75 61.01 173.60 466.71 930146229837458.25

GemCNN

Z500 ACC 0.934 0.984 0.962 0.910 0.818 0.742 0.650 0.584 -0.007
Z500 RMSE 304.11 156.00 242.86 364.36 521.75 615.11 724.60 785.92 1461.45
T850 ACC 0.879 0.995 0.901 0.776 0.670 0.581 0.477 0.392 -0.025
T850 RMSE 1.71 0.34 1.51 2.30 2.77 3.10 3.49 3.80 6.05

Hermes

Z500 ACC 0.919 0.948 0.888 0.795 0.670 0.568 0.472 0.402 0.129
Z500 RMSE 339.23 289.93 463.62 667.90 927.73 1157.17 1416.43 1653.81 25644.40
T850 ACC 0.842 0.906 0.756 0.586 0.447 0.340 0.252 0.187 -0.025
T850 RMSE 1.96 1.50 2.55 3.59 4.45 5.20 5.99 6.76 293.82

MPNN

Z500 ACC 0.911 0.943 0.916 0.839 0.726 0.617 0.512 0.429 0.139
Z500 RMSE 349.58 283.77 360.45 519.00 721.06 908.69 1116.36 1310.80 11191.46
T850 ACC 0.846 0.933 0.898 0.817 0.724 0.638 0.547 0.469 0.043
T850 RMSE 1.90 1.23 1.52 2.03 2.48 2.82 3.17 3.44 5.99

Transformer

Z500 ACC -0.150 -0.150 -0.150 -0.150 -0.150 -0.150 -0.149 -0.149 -0.147
Z500 RMSE 55368.55 55368.50 55368.45 55520.22 55520.17 55520.12 55558.25 55558.18 55570.73
T850 ACC 0.884 0.884 0.884 0.553 0.553 0.553 0.304 0.304 -0.068
T850 RMSE 1.62 1.62 1.62 3.13 3.13 3.13 3.96 3.96 7.37

R-UNIMESH (Ours)

Z500 ACC 0.950 0.985 0.947 0.882 0.786 0.703 0.614 0.546 0.147
Z500 RMSE 260.31 140.60 271.28 405.01 556.83 662.19 773.67 853.87 2821.03
T850 ACC 0.888 0.964 0.889 0.774 0.679 0.598 0.504 0.428 0.134
T850 RMSE 1.63 0.91 1.63 2.37 2.85 3.20 3.65 4.04 11.68

Table 7. Weather Forecasting Results, ACC and RMSE at Different Lead Times for Temperature and Geopotential.

Model RE Temperature (↓) RE Geopotential (↓)
GCN 6.8 · 10−2 ± 1.7 · 10−2 1.2 · 10−3 ± 1.0 · 10−3

MPNN 3.0 · 10−3 ± 2.7 · 10−3 1.3 · 10−3 ± 8.5 · 10−4

Hermes 3.1 · 10−1 ± 7.5 · 10−1 1.0 · 10−1 ± 3.6 · 10−1

GemCNN 8.9 · 10−4 ± 7.0 · 10−4 9.4 · 10−4 ± 6.1 · 10−4

EMAN 7.7 · 100 ± 5.2 · 100 4.1± 2.6 · 10−2

EGNN 1.1 · 10−3 ± 7.3 · 10−4 8.3 · 10−4 ± 1.0 · 10−3

Transformer 9.4 · 10−4 ± 8.2 · 10−4 2.0 · 10−3 ± 1.1 · 10−3

R-UNIMESH (Ours) 2.2 · 10−3 ± 1.6 · 10−3 9.8 · 10−4 ± 7.2 · 10−4

Table 8. Rayleigh error for all models for all initializations on WB2 temperature and geopotential. Best performing model is indicated
with bold text. Errors scaled up by ×40.
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